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Abstract 

A new recurrence relation between the reduced matrices of 
the irreducible representations of the rotation group is 
proposed, which permits their accurate computation for 
high orders of the representation. 

This work was motivated by the appearance of numerical 
divergences during the computation of the fast rotation 
function (Crowther, 1972). The origin of this behaviour was 
found to be the numerical instability of the recurrence 
relation used to compute the rotation matrices, for moder- 
ately high angular momenta and a wide range of angles. 
Overflows were in fact detected for expansions involving 
spherical harmonics of order j -> 74. 

In an irreducible representation of the rotation group of 
dimension 2j + 1, the rotation parameterized by the Euler 
angles (a,/3, 3') is represented by the matrix (Brink & 
Satchler, 1975) 

D~.(a,/3, y ) = d ~ . ( / 3 ) e x p - i ( m a + n T ) .  (1) 

The reduced matrices d~ ,  are determined by means of 
the 'triangular' relationship (Altmann & Bradley, 1963) 

[( j  - m )(j + m + 1) ]'/2 d~,.(/3 ) 
+ [( j  - n + 1)(j + n)]'/2dL+,,.-l(/3) 

+(m-n+l )co t ( /3 /2 )d~+, , . ( /3 ) ,  (2) 

starting from the analytical expression 

d~j(/3) = (2 j ) ! / [ ( j  + m)!(j - m)!],/2 

x sin (/3/2) j-m cos (/3/2) ~+m. (3) 

Only the elements with - n - <  m<-n, n>-0 have to be 
evaluated. According to (2) and (3), ( j  - n + 1), ( j  - n + 2)/2 
elements are necessary to determine d~ , .  The number of 
operations grows as j2 for small values of n, and the propa- 
gation of errors causes the observed divergences. 

The unitarity of the representation implies the following 
orthogonality condition for the reduced matrices: 

J 
d ~ , ° ( / 3 ) d ~ , , . ( / 3 )  - 8 , . . . , ,  = O, 

n = - - j  

-j<_ m, m'<-j. (4) 

Therefore, the magnitude of the errors produced by the 
numerical calculation may be described by computing the 
maximum, when m and m' are varied, of the absolute value 
of the left-hand member of (4), for given j and/3. This is 
shown in Fig. 1, for j-< 60, which are the values used in 
the standard program of Crowther. Although big enough, 
such er,:ors do not produce overflows in most computers 
and are seldom detected. 
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Fig. 1. Contour levels of the maximal deviation from the orthogon- 
ality conditions, of the reduced matrices d J(fl), computed with 
the recurrence relation (2). 
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The following 'linear' recurrence relation, 

[( j  n + l ) ( j +  1/2 j - m)] dm, n-l(fl) 
n ~ ] i / 2 r / J  + [ ( j + n + l ) ( j - . . , j  ,-m,,+l(fl) 

+2(m - n cos/3) sin -I (fl)d~,,(fl) = O, (5) 

proved to be remarkably stable, the starting point being (3) 
and (formally) d~j+l(fl)= 0. It can be verified by direct 
replacement of the explicit expressions of the d j given m, rt 

by Brink & Satchler (1975). Since the type and number of 
operations are almost the same as in (2), and taking into 
account the results of Fig. 1, it can be estimated that troubles 
may begin for j of the order of 1000. The formula was 
tested for j  <-250, and the deviation from the orthogonality 

conditions was less than 10 -1° . All the computations were 
performed in double precision on the IBM 3090 of C1RCE, 
Orsay. 

The author thanks Pascalou Rigolet for drawing his 
attention to this problem. 
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Abstract 

Salient features of various parameterizations of cubic-cubic 
misorientation are discussed. It is proposed that the quater- 
nion representation of rotations, as a pair of antipodal 
points on the surface of a four-dimensional sphere, encom- 
passes the most desirable properties of other proposed 
representations, viz rectilinearity, a closed form for the 
composition of successive rotations, and an equivalence 
between the Euclidean measure on its parameter space and 
the invariant measure in the space of rotations. The 
classification of cubic-cubic misorientations according to 
group multiplicity is described in Euler angle and quater- 
nion representations. A correspondence between co- 
incidence site lattice (CSL) boundaries (Z_<49), Euler 
angles and axis-angle parameters is given. 

The following pertains to the recent paper of Zhao & Adams 
(1988), entitled Definition of an Asymmetric Domain for 
lntercrystalline Misorientation in Cubic Materials in the 
Space of Euler Angles, and subsequent comments of 
Grimmer (1989). It is clear that the Euler angle representa- 
tion of misorientation suffers from a number of disadvan- 
tages as discussed by Altmann (1986), Frank (1988), 
Grimmer (1989), and others. However, quantitative descrip- 
tions of orientation and misorientation distribution func- 
tions have usually been expressed in Fourier series using 
generalized spherical harmonics (Bunge, 1982); and these 
are defined in terms of Euler angles (Gelfand, Minlos & 
Shapiro, 1963). In their calculation of the misorientation 
distribution function (MDF) in copper, for example, 
Pospiech, Sztwiertnia & Haessner (1986) used the space of 
Euler angles for computation, and later transformed to the 
axis-angle parameters. Comparable orthogonal basis func- 
tions for axis-angle, quaternion, Rodrigues or other par- 
ameterizations have not yet been defined, even though they 

would be valuable. The work of Zhao & Adams (1988) was 
motivated by the pressing need to represent continuous 
functions, in the smallest physically distinctive domain of 
cubic-cubic misorientation, given the necessity of using 
Euler angles. The definition of an asymmetric domain sig- 
nificantly reduces computation time and increases the 
clarity of representation. 

The quaternion representation described in the comments 
by Grimmer has some significant advantages. This rep- 
resentation, due to Handscomb (1958), defines rotation by 
a pair of antipodal points on the hypersurface of a unit 
sphere in four-dimensional space. [Note that this is not the 
quaternion parameter Q of Frank (1988), which is obtained 
from Handscomb's quaternion by omitting its fourth com- 
ponent.] Handscomb shows in his concise paper that his 
representation has the following properties. It has the rec- 
tilinearity property of Frank's mapping (ii). In fact 
Handscomb obtains the semi-regular truncated cube by 
considering the quaternions corresponding to minimum 
angle descriptions of misorientations between cubic crys- 
tals. It also has the property that the result of two successive 
rotations can be calculated as easily as in Frank's mapping 
(iii). Finally it has the property that the Euclidean measure 
on its parameter space corresponds to an invariant measure 
in the space of rotations as in Frank's mapping (iv). In 
summary, it combines the advantages of Frank's mappings 
(ii)-(iv) at the price of using four dimensions instead of 
three. Conversely, the price of going to three dimensions 
is that at most one of the three desired properties can be 
maintained. 

Table 2 of the previous paper by Zhao & Adams contains 
some errors as noted by Grimmer. Table 1 of this comment 
is a corrected table. It is correct that only boundaries with 
rotation axis [1, 1, 1] should be classified as m =6. This 
statement is in good agreement with the analysis presented 
in section 3 of the paper (Zhao & Adams, 1988). Boundaries 
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